Left Termination of the query pattern rem_in_3(g, g, a) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

rem(X, Y, R) :- ','(notZero(Y), ','(sub(X, Y, Z), rem(Z, Y, R))).
rem(X, Y, X) :- ','(notZero(Y), geq(X, Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
notZero(s(X)).
geq(s(X), s(Y)) :- geq(X, Y).
geq(X, 0).

Queries:

rem(g,g,a).

We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
rem_in: (b,b,f)
sub_in: (b,b,f)
geq_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REM_IN_GGA(X, Y, R) → U1_GGA(X, Y, R, notZero_in_g(Y))
REM_IN_GGA(X, Y, R) → NOTZERO_IN_G(Y)
U1_GGA(X, Y, R, notZero_out_g(Y)) → U2_GGA(X, Y, R, sub_in_gga(X, Y, Z))
U1_GGA(X, Y, R, notZero_out_g(Y)) → SUB_IN_GGA(X, Y, Z)
SUB_IN_GGA(s(X), s(Y), Z) → U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z))
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
U2_GGA(X, Y, R, sub_out_gga(X, Y, Z)) → U3_GGA(X, Y, R, rem_in_gga(Z, Y, R))
U2_GGA(X, Y, R, sub_out_gga(X, Y, Z)) → REM_IN_GGA(Z, Y, R)
REM_IN_GGA(X, Y, X) → U4_GGA(X, Y, notZero_in_g(Y))
REM_IN_GGA(X, Y, X) → NOTZERO_IN_G(Y)
U4_GGA(X, Y, notZero_out_g(Y)) → U5_GGA(X, Y, geq_in_gg(X, Y))
U4_GGA(X, Y, notZero_out_g(Y)) → GEQ_IN_GG(X, Y)
GEQ_IN_GG(s(X), s(Y)) → U7_GG(X, Y, geq_in_gg(X, Y))
GEQ_IN_GG(s(X), s(Y)) → GEQ_IN_GG(X, Y)

The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
U4_GGA(x1, x2, x3)  =  U4_GGA(x1, x2, x3)
GEQ_IN_GG(x1, x2)  =  GEQ_IN_GG(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x2, x4)
NOTZERO_IN_G(x1)  =  NOTZERO_IN_G(x1)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x3)
REM_IN_GGA(x1, x2, x3)  =  REM_IN_GGA(x1, x2)
SUB_IN_GGA(x1, x2, x3)  =  SUB_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U7_GG(x1, x2, x3)  =  U7_GG(x3)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

REM_IN_GGA(X, Y, R) → U1_GGA(X, Y, R, notZero_in_g(Y))
REM_IN_GGA(X, Y, R) → NOTZERO_IN_G(Y)
U1_GGA(X, Y, R, notZero_out_g(Y)) → U2_GGA(X, Y, R, sub_in_gga(X, Y, Z))
U1_GGA(X, Y, R, notZero_out_g(Y)) → SUB_IN_GGA(X, Y, Z)
SUB_IN_GGA(s(X), s(Y), Z) → U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z))
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
U2_GGA(X, Y, R, sub_out_gga(X, Y, Z)) → U3_GGA(X, Y, R, rem_in_gga(Z, Y, R))
U2_GGA(X, Y, R, sub_out_gga(X, Y, Z)) → REM_IN_GGA(Z, Y, R)
REM_IN_GGA(X, Y, X) → U4_GGA(X, Y, notZero_in_g(Y))
REM_IN_GGA(X, Y, X) → NOTZERO_IN_G(Y)
U4_GGA(X, Y, notZero_out_g(Y)) → U5_GGA(X, Y, geq_in_gg(X, Y))
U4_GGA(X, Y, notZero_out_g(Y)) → GEQ_IN_GG(X, Y)
GEQ_IN_GG(s(X), s(Y)) → U7_GG(X, Y, geq_in_gg(X, Y))
GEQ_IN_GG(s(X), s(Y)) → GEQ_IN_GG(X, Y)

The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
U4_GGA(x1, x2, x3)  =  U4_GGA(x1, x2, x3)
GEQ_IN_GG(x1, x2)  =  GEQ_IN_GG(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x2, x4)
NOTZERO_IN_G(x1)  =  NOTZERO_IN_G(x1)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x3)
REM_IN_GGA(x1, x2, x3)  =  REM_IN_GGA(x1, x2)
SUB_IN_GGA(x1, x2, x3)  =  SUB_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U7_GG(x1, x2, x3)  =  U7_GG(x3)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 3 SCCs with 9 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GEQ_IN_GG(s(X), s(Y)) → GEQ_IN_GG(X, Y)

The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)
GEQ_IN_GG(x1, x2)  =  GEQ_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GEQ_IN_GG(s(X), s(Y)) → GEQ_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

GEQ_IN_GG(s(X), s(Y)) → GEQ_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)
SUB_IN_GGA(x1, x2, x3)  =  SUB_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUB_IN_GGA(x1, x2, x3)  =  SUB_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

SUB_IN_GGA(s(X), s(Y)) → SUB_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

REM_IN_GGA(X, Y, R) → U1_GGA(X, Y, R, notZero_in_g(Y))
U2_GGA(X, Y, R, sub_out_gga(X, Y, Z)) → REM_IN_GGA(Z, Y, R)
U1_GGA(X, Y, R, notZero_out_g(Y)) → U2_GGA(X, Y, R, sub_in_gga(X, Y, Z))

The TRS R consists of the following rules:

rem_in_gga(X, Y, R) → U1_gga(X, Y, R, notZero_in_g(Y))
notZero_in_g(s(X)) → notZero_out_g(s(X))
U1_gga(X, Y, R, notZero_out_g(Y)) → U2_gga(X, Y, R, sub_in_gga(X, Y, Z))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U2_gga(X, Y, R, sub_out_gga(X, Y, Z)) → U3_gga(X, Y, R, rem_in_gga(Z, Y, R))
rem_in_gga(X, Y, X) → U4_gga(X, Y, notZero_in_g(Y))
U4_gga(X, Y, notZero_out_g(Y)) → U5_gga(X, Y, geq_in_gg(X, Y))
geq_in_gg(s(X), s(Y)) → U7_gg(X, Y, geq_in_gg(X, Y))
geq_in_gg(X, 0) → geq_out_gg(X, 0)
U7_gg(X, Y, geq_out_gg(X, Y)) → geq_out_gg(s(X), s(Y))
U5_gga(X, Y, geq_out_gg(X, Y)) → rem_out_gga(X, Y, X)
U3_gga(X, Y, R, rem_out_gga(Z, Y, R)) → rem_out_gga(X, Y, R)

The argument filtering Pi contains the following mapping:
rem_in_gga(x1, x2, x3)  =  rem_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
U2_gga(x1, x2, x3, x4)  =  U2_gga(x2, x4)
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x2, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
geq_in_gg(x1, x2)  =  geq_in_gg(x1, x2)
U7_gg(x1, x2, x3)  =  U7_gg(x3)
geq_out_gg(x1, x2)  =  geq_out_gg
rem_out_gga(x1, x2, x3)  =  rem_out_gga(x3)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x2, x4)
REM_IN_GGA(x1, x2, x3)  =  REM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

REM_IN_GGA(X, Y, R) → U1_GGA(X, Y, R, notZero_in_g(Y))
U2_GGA(X, Y, R, sub_out_gga(X, Y, Z)) → REM_IN_GGA(Z, Y, R)
U1_GGA(X, Y, R, notZero_out_g(Y)) → U2_GGA(X, Y, R, sub_in_gga(X, Y, Z))

The TRS R consists of the following rules:

notZero_in_g(s(X)) → notZero_out_g(s(X))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)

The argument filtering Pi contains the following mapping:
notZero_in_g(x1)  =  notZero_in_g(x1)
s(x1)  =  s(x1)
notZero_out_g(x1)  =  notZero_out_g
sub_in_gga(x1, x2, x3)  =  sub_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
0  =  0
sub_out_gga(x1, x2, x3)  =  sub_out_gga(x3)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x2, x4)
REM_IN_GGA(x1, x2, x3)  =  REM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y)
REM_IN_GGA(X, Y) → U1_GGA(X, Y, notZero_in_g(Y))
U1_GGA(X, Y, notZero_out_g) → U2_GGA(Y, sub_in_gga(X, Y))

The TRS R consists of the following rules:

notZero_in_g(s(X)) → notZero_out_g
sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

notZero_in_g(x0)
sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule REM_IN_GGA(X, Y) → U1_GGA(X, Y, notZero_in_g(Y)) at position [2] we obtained the following new rules:

REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y)
REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)
U1_GGA(X, Y, notZero_out_g) → U2_GGA(Y, sub_in_gga(X, Y))

The TRS R consists of the following rules:

notZero_in_g(s(X)) → notZero_out_g
sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

notZero_in_g(x0)
sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y)
REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)
U1_GGA(X, Y, notZero_out_g) → U2_GGA(Y, sub_in_gga(X, Y))

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

notZero_in_g(x0)
sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

notZero_in_g(x0)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y)
REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)
U1_GGA(X, Y, notZero_out_g) → U2_GGA(Y, sub_in_gga(X, Y))

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule U1_GGA(X, Y, notZero_out_g) → U2_GGA(Y, sub_in_gga(X, Y)) at position [1] we obtained the following new rules:

U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
U1_GGA(x0, 0, notZero_out_g) → U2_GGA(0, sub_out_gga(x0))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y)
U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
U1_GGA(x0, 0, notZero_out_g) → U2_GGA(0, sub_out_gga(x0))
REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y)
U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
By instantiating [15] the rule U2_GGA(Y, sub_out_gga(Z)) → REM_IN_GGA(Z, Y) we obtained the following new rules:

U2_GGA(s(z1), sub_out_gga(x1)) → REM_IN_GGA(x1, s(z1))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
U2_GGA(s(z1), sub_out_gga(x1)) → REM_IN_GGA(x1, s(z1))
REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g)

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule REM_IN_GGA(y0, s(x0)) → U1_GGA(y0, s(x0), notZero_out_g) we obtained the following new rules:

REM_IN_GGA(s(y_0), s(x1)) → U1_GGA(s(y_0), s(x1), notZero_out_g)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ ForwardInstantiation
QDP
                                                    ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
U2_GGA(s(z1), sub_out_gga(x1)) → REM_IN_GGA(x1, s(z1))
REM_IN_GGA(s(y_0), s(x1)) → U1_GGA(s(y_0), s(x1), notZero_out_g)

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_GGA(s(z1), sub_out_gga(x1)) → REM_IN_GGA(x1, s(z1)) we obtained the following new rules:

U2_GGA(s(x0), sub_out_gga(s(y_0))) → REM_IN_GGA(s(y_0), s(x0))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ ForwardInstantiation
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
QDP
                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
U2_GGA(s(x0), sub_out_gga(s(y_0))) → REM_IN_GGA(s(y_0), s(x0))
REM_IN_GGA(s(y_0), s(x1)) → U1_GGA(s(y_0), s(x1), notZero_out_g)

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U2_GGA(s(x0), sub_out_gga(s(y_0))) → REM_IN_GGA(s(y_0), s(x0))
The remaining pairs can at least be oriented weakly.

U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
REM_IN_GGA(s(y_0), s(x1)) → U1_GGA(s(y_0), s(x1), notZero_out_g)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( sub_in_gga(x1, x2) ) =
/0
0/
+
/11
11/
·x1+
/00
00/
·x2

M( 0 ) =
/0
0/

M( s(x1) ) =
/0
1/
+
/11
00/
·x1

M( notZero_out_g ) =
/0
0/

M( U6_gga(x1) ) =
/0
0/
+
/01
10/
·x1

M( sub_out_gga(x1) ) =
/0
0/
+
/11
11/
·x1

Tuple symbols:
M( U1_GGA(x1, ..., x3) ) = 0+
[1,0]
·x1+
[0,0]
·x2+
[0,0]
·x3

M( U2_GGA(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( REM_IN_GGA(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)
sub_in_gga(X, 0) → sub_out_gga(X)
sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ ForwardInstantiation
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(s(x0), s(x1), notZero_out_g) → U2_GGA(s(x1), U6_gga(sub_in_gga(x0, x1)))
REM_IN_GGA(s(y_0), s(x1)) → U1_GGA(s(y_0), s(x1), notZero_out_g)

The TRS R consists of the following rules:

sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)

The set Q consists of the following terms:

sub_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.